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1. Introduction 
The World is full of “webby”, multibranch 
objects with tree-like structure, named den-
drites, from the Greek word dendron: tree. 
Typical examples are everywhere: connex-
ions of a neural cell, lightnings in the at-
mosphere, etc. We shall see many more 
examples. The figures below show the pat-
tern formed by the growth of bacteriae on 
a planar support, the figure of Hele-Shaw 
generated by the injection of gaz (or a liquid) 
into a layer of viscous liquid, and finally, 
the Lichtenberg figure – an electric dischar-
ge inside a dielectric. 

Fig. 1. Fear... 

 

             
Fig. 2. Some examples of natural dendrites 

 
(Currently we have better apparatus than Georg Christoph Lichtenberg (1742– 
–1799). For example, a piece of organic glass is pumped by a beam of electrons 
from an accelerator, until its explosive discharge. Scientists continue to investigate 
the properties of those complex sparks, since they provide a plethora of informa-
tion on the isolation properties of various materials, which is very important in 
engineering. However, the figures are so nice, that the production of Lichtenberg 
figures in different frames and shapes became a profitable souvenir business...)  
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 The central picture on the previous page may represent also a section of a piece 
of coral, or a deposit of metal condensation out of vapour. Many crystals grow 
showing such patterns, and several young chemists played at home with a little 
chemical “garden”: an aquarium is filled with an aqueous solution of water glass 
(sodium silicate). Then, we put in some small crystals of metallic sulphates or 
nitrates: copper, iron, manganese, cobalt, etc., of various colours.  
 The salts dissolve, and they react with the water glass, producing semiperme-
able, insoluble membranes of metal silicates. The osmosis makes the water diffuse 
into the layer between the crystal and the membrane, and this layer expands, until 
it bursts. Then some salt solution is liberated, and seals immediately the hole, 
forming new membrane. Since the membrane breaks usually in places where it is 
fresh and thin, the process produces “fingers” or “tongues”, similar to corals.  
 Of course, it would be preposterous to try to find common physical mecha-
nisms responsible for the structure of our blood vessel system, the structure of a 
neuron, and the affluent system of a big river, but several really distant physical or 
biological phenomena share some common mathematics. Usually this mathemat-
ics is complicated, and some common features need computer simulation in order 
to have some insight. 
 
2. Dendrites and diffusion; a computer experiment 
The following experiment which demonstrates a dendritic aggregation is imple-
mented as a very simple program which can be coded by high-school pupils. A 
finite space represented as a zero-one (2- or 3-dimensional) array, is filled with 
zeros, only near the center we put one 1 – an immobile “nucleus”, a small grain in 
a vessel filled with liquid. At some small distance of the nucleus we put another 
grain, not “physically”, but we just memorize its position. This second grain may 
displace itself, and it does so randomly, as in the figure below, at the left. This 
simulates the Brownian motion, and is implemented as a “drunk’s walk”: the mov-
ing particle makes one step, collides with something, forgets everything, and con-
tinues its walk in a random direction... 
 When this particle eventually touches the nucleus, its position becomes adja-
cent to that of the immobile grain. Then, it stops and becomes an element of the 
growing aggregate, the value of the array element becomes 1. The following parti-
cles, which start outside the region of the aggregate, undergo the same treatment. 
Let us repeat this drunk’s walk some thousands times. What will be the shape of 
the growing compound? 
 The reader who has never seen the solution shown below, could suspect that 
the nucleus grows as an irregular, but compact blob. But no, we clearly see the 
appearance of filamentary structures, of dendrites.  
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Fig. 3. A sample of a random “diffusion” path, and the result of the aggregation  

of diffusing particles 
 
Why does this happen? It is much easier for the moving grain to collide with the 
external “corona” of the existing structure, than to pass through narrow channels 
near the center of the cluster. One can estimate that about 75% of the cluster, 
forming its central part, does not evolve any more, while the dendrite growth is 
mainly peripheral. The evolution is quite unstable. If a new particle makes a little 
“bump” on an existing branch, it will increase the probability that new particles 
stop at this bump, so it will grow faster than its neighbourhood.  
 In principle that is all. We can make the array more complicated, so that dif-
ferent zones within the “web” indicate the age of the local particles, and this may 
be coded as colour. We can choose different initial positions of particles, or re-
strict its movements to the vicinity of the nucleus; instead of waiting until it comes 
back, we destroy it, and start with a nearer one.  
 This will accelerate our simulation. Another way of making it faster is to 
generate steps bigger than 1 pixel, e.g., the smallest distance between the grain 
and the cluster, and random direction, with the angle within [0, 2π). This is a clas-
sical “computer cheating”, but algorithmically correct. We lose only the relation 
between the real time, and the simulated one, since the speed of diffusion has no 
physical meaning anymore. Plenty of other optimisations are possible, some of 
them are based on the analysis of some extended neighbourhood of the grain, 
while in Nature particles are blind, they “feel” the collision only when it takes 
place. 
 
3. But why this similarity of forms? 
Why this experiment is interesting? Well, since the dendrites are everywhere, we 
can put forward a hypothesis that the abstract mechanisms of their generation are 
– at least partly – universal. If our simulation works well we may be able to under-
stand better their character. We know that the topology of several geometric ob-
jects are often invariant and universal. 

 



SPECIAL ISSUE, Spring 2006 46

 In particular, we can see why the “chemical garden” dendrites have some 
formal affinities with our clustering process. The diffusion aggregate grows by 
glueing new particles from outside, while the chemical dendrite from inside, but in 
both cases the appearance of new elements, new “fingers” increases the chance 
that the growth will continue at their position. The rich becomes richer, there is no 
“social justice” in this phenomenon... 
 On the other hand, the sparks (lightnings, Lichtenberg figures, etc.) are re-
gions of ionized, conducting gas, extending from electrodes. We know that the 
electric potential of an electrode is constant, but the field intensity depends very 
strongly on the surface curvature, it is stronger near edges and corners. There, it 
becomes easier to ionize new volumes of gas, and to extend the region occupied 
by the spark.  
 We might say a few words about the theory. Several fields (such as the elec-
tric field, or the field of velocities of an uncompressible liquid) fulfil the Laplace 
differential equation. In two dimensions its form is ( .0)// 2222 =∂∂+∂∂ Vyx  We 
could prove that if for a given point (x, y) in the space outside the cluster we sum 
the values of the electric field at the points on the space boundary, from which we 
get to the given point by following random paths, the result will give us 
a numerical, approximate solution of the Laplace equation! Such a random way of 
solving this equation is effectively used in many problems in physics and engi-
neering. Random numbers and functions are often useful for solving completely 
deterministic problems.  
 A similar mechanism may be applied to the Hele-Shaw figures. We have to 
analyze the dependence of the liquid surface tension which tries to confine the 
introduced droplet of liquid, on the local curvature of its surface. Again this is 
unstable. The analysis of the growth of bacteriae may be left as an exercice. It is 
sufficient to take into account the fact that the bacteriae must get some food, and if 
they are too numerous, they poison the environment, making the reproduction 
more difficult. Corals (or ordinary trees) which also grow in a dendritic way, are 
too complicated to discuss here, although, as for the bacteriae, the fact that the 
food (or light) is outside, also plays its role.  
 It might be useful to look at a counter-example. A forest fire behaves differ-
ently. Despite the fact that there is more oxygen outside, and it comes from out-
side rather than from above (convection), the form of the burning region is blobby 
rather than dendritic, since the air is in constant motion, and a heated-up tree, well 
inside the burning zone catches fire much easier. 
 
4. Fractal dimension of dendrites 
The mechanism of DLA (DiffusionLimited Aggregation), described and simulated 
already long ago, has been analyzed in details quite recently, in 1981, by T.A. 
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Witten, and L.M. Sander. We cannot discuss here many interesting details, but we 
can say a few words on the topological dimension of the generated cluster. Our 
simulation is powerful enough to measure it. But what is this dimension? We 
know that we live in a 3-dimensional space. A “normal” material object of a given 
density possesses a mass, which – by the definition of density – is proportional to 
its volume, and thus to l3, where l is some characteristic linear parameter of the 
object, e.g. the radius of a sphere, if the object is more or less spherical.  
 In 2 dimensions the surface replaces the volume. A compact blob will have 
the dimension 2. A thin thread (line, path) which would be created if its constitu-
ent particles positioned themselves one behind the other, without drastic changing 
of direction, nor self-intersections, would have the dimension 1. The characteristic 
attribute would be the length of the object as a function of the number of particles.  
 While simulating DLA, we might measure the dependence of the radius – 
maximal or average – of the aggregate, on the number of particles forming it. It 
turns out empirically that in the limit of large number of particles, the dependence 
is N = const · r1.7. Such a non-integer dimension is called fractal. We observe a 
very curious phenomenon, this non-integer exponent is relatively invariant, it has 
the same value for many distinct physical systems. The DLA process in 3 dimen-
sions, which is as easy to simulate as the 2D version, but much, much slower, 
gives us the fractal dimension approximately equal to 2.5.  
 Of course, scientists use much more elaborate models. For example a moving 
particle may, with a certain probability, refuse to attach itself to the cluster, and 
continue to move. This gives dendrites more compact and “furry”, like a flake of 
soot. The dependence of the fractal exponent and the viscosity of the particles 
gives us interesting information on the structure of such matter. 
 
5. Model of Hastings and Levitov 
We shall discuss now a not well known (and rarely taught) model of dendritic 
development, based on the theory of analytic functions. This is a complex and 
involved model, and the reader is not expected to follow all the details. But the 
foundations are straightforward to explain. In 1998 
M.B. Hastings and L.S. Levitov noticed that the 
solution of the 2D Laplace equation use the theory of 
functions on the complex plane, and the s.c. 
conformal transformation. By itself, this was known 
for many years.  
 They reasoned: let’s analyze the transformation  of a unit disk on 
a complex plane z, i.e., the region which fulfils the constraint |

)(, zf r φ

,1|≤z  into a disk 
with an extruded “finger”, as shown in this figure. 
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 The parameters ,( )φr  specify the position and the orientation of the extru-
sion. The angle φ  will be randomly drawn from the interval (0 – 2π), and r de-
pends on the stage of the generation process. The function f will permit the con-
struction of much more complicated transformation which makes a dendrite out of 
a unit disk. If we knew this incredibly complicated function D(z) which specifies 
the dendrite containing, say, N particles (local extrusions), then D(f (z)) will de-
scribe the dendrite with one more element. So, we take a computer, we begin with 
D0(z) which defines the disk of radius R, and we iterate. The function f is not very 
complicated, but it is not too pleasant either, for example ,)()(,
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(Additionally, during the iterations we must rescale r, in order to preserve correct 
proportions.) We can easily show that already the second or the third iteration 
create functions so complicated that almost impossible to write down analytically. 
However, we can do it numerically, storing in the memory of the computer an 
array which represents the function contour. Each iteration produces a new geo-
metric layer. A few initial stages are shown below. Here r does not decrease too 
fast, so we obtain a finger-like structure, not filaments.  
 

 
 

We shall not discuss the programme which creates this figure, it is not very sim-
ple. Our aim was to demonstrate that the theory of complex functions, sometimes 
presented to students in an abstract way, finds some unexpected applications in 
physics. We show also that computers enable us to manipulate functions which are 
so complicated, that impossible to put down on paper, since they are the outcome 
of several thousands of iterations. 
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 Our text contains also some philosophical ideas, since it argues for the unity of 
Nature. In many, apparently very distinct contexts we see phenomena of unstable 
geometrical evolution. We introduce the Laplace equation (often being the conclu-
sion of some conservation laws and the continuity), we operate upon a system 
with a short memory (Markov systems), and we build some mathematical models 
for those systems. Often, if we succeed, we realize that those models are similar. 
So, the behaviour of all those systems is similar, despite dramatic structural differ-
ences between them. 
 Sometimes a tree-like development is not relevant to a single object, but it is 
distributed among several generations, and many, many years. From a goal-orien-
ted perspective sometimes used to analyze evolution, a neuron “wants” to com-
municate with as many neighbours as possible. The blood vessels “want” to irri-
gate the biggest possible volume of a body in an economical way. So, the instabili-
ties do not concern individuals, but genetics: speciments which possessed those 
more branched apparata, were more clever or more robust, so that they could 
transmit their genes more efficiently. 
 The generation of dendrites is a simple, but characteristic, archetypical exam-
ple of morphogenesis which is the source of the richness of forms in the Universe. 
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